MNSD-V & MNSD-U MULTIPLE NOZZLE SPRAY DESUPERHEATER >Copes-Vulcan® Copes-Vulcan has been providing control valves and desuperheaters for the power, process and nuclear industries since 1903. SPX provides a wide range of valves for the control of pressure, temperature and flow-induced noise in all types of power plants. Products include severe service and general service control valves, variable orifice desuperheaters, Raven™, trim and steam conditioning valves and nuclear control valves, as well as custom designed specialty valves. Copes-Vulcan is recognized worldwide as a leader in valves for severe and critical service applications. Our strength lies in our ability to provide innovative valve solutions for our customers' application needs. Finding innovative ways to help the world meet its ever growing demand for energy is a key focus for SPX. SPX provides creative solutions the serve global industrial markets in a myriad of ways. Our ideas are helping build more efficient power plants and renovate older existing facilities. SPX supplies a wide range of components – from air preheaters to filter systems for various power and energy applications. With operations in over 35 countries, SPX has the global experience and regional presence, products and powerful ideas it takes to help our customers compete more effectively, and more efficiently deliver power to almost any part of the world. # Multiple Nozzle Spray Desuperheater (MNSD) ### OFFERS HIGH TEMPERATURE CAPABILITIES AND LOW COOLANT CLASS V LEAKAGE RATING The Multiple Nozzle Spray Desuperheater offers optimum performance and rangeability in a variable spray tube design. The Model MNSD-V fills the performance gap between the limited capability of a simple mechanical spray type desuperheater and the virtually unlimited capability of Copes-Vulcan's Variable Orifice Desuperheater (Model VO). And, the MNSD-V offers high temperature capabilities and low class V leakage rating. ### **FEATURES** - Temperature control to within 15°F (8°C) of saturation with the ability to hold set point within a tolerance of 10°F (6°C) - Standard maximum available Cv of 10.5 (Kv of 8.9) - Waterflow turndown of 150:1 or higher - User friendly design nozzles and trim assembly can be removed without disconnecting actuator - No need for separate cooling water control valve - Designed for applications with temperatures up to 1150°F (620°C) - Available in standard classes 600, 900, 1500 and 2500 per ANSI B16.5 - Cooling water inlet pressures up to 3500 psig (24 MPag) allowable standard (higher pressures allowable per application) - ANSI Class V FCI 70-2 tight shutoff capability - Suitable for vertical or horizontal installation - Standard ANSI connections: 3" (80mm) raised face flange (steam) 1.5" (40mm) raised face flange (water) - Designed for high thermal fatigue life Many applications require turndowns in excess of that offered by a simple mechanical spray desuperheater but do not necessarily warrant the expense or require the additional refinements offered by the Variable Orifice Desuperheater. Many of these intermediate duties can be met with a steam atomizing type desuperheater (SA-35), but atomizing steam is often not available, or the additional installation and operational expense is not economically justified. The Multiple Nozzle Spray Desuperheater has been designed for these applications. The MNSD-V Desuperheater automatically controls the cooling water flow with the ability to modulate and shutoff. A separate cooling water control valve is not required as the unit itself controls variations in required coolant flow. Unlike competitive models that can only operate with relatively low water inlet pressures, the MNSD-V can be supplied to accept cooling water inlet pressures to 3500 psig (24 MPag). ### **DESIGN AND PRINCIPLE OF OPERATION** The MNSD-V consists essentially of a cage-guided plug situated within the nozzle tube just behind the discharge nozzles. The nozzle tube assembly fits up into the bore of the mounting flange and is locked in place with a threaded ring. This junction enables the cooling water inlet connection to orient in any direction relative to the position of the discharge nozzle spray at time of assembly.* Field alteration of this orientation is also quite easy. The MNSD-V Desuperheater head offers a means of mounting the unit to a companion flange on the main header. It also provides an inlet connection for the cooling water, a gland assembly for stem sealing and a mounting arrangement for the dependable Copes-Vulcan Model 700 Diaphragm Actuator. *Standard orientation is cooling water inlet directly opposite spray outlet. ### Typical product applications **Power** Chemical Refineries Pulp & Paper ### **DISCHARGE NOZZLES** The multiple nozzle arrangement located near the end of the nozzle tube is composed of up to 22 uniquely designed discharge nozzles arranged in an overlapping manner to offer an extremely smooth flow characteristic. The quantity, individual sizes, and placement of the discharge nozzles are selected for each application to optimize capacity, maximize controllability and rangeability. ### **COOLING WATER** The cooling water is admitted to the nozzle tube assembly through the branch in the mounting head. It reaches the lower portion of the nozzle tube assembly as the plug exposes the nozzles. With the plug seated, no cooling water can reach the discharge nozzles. As the plug is extended by the actuator under the signals of the temperature control loop, cooling water is throttled at each exposed nozzle through flow characterization slots located just prior to the discharge nozzles. ### **OPTIMUM DESUPERHEATER EFFICIENCY** The cooling water then passes through specially designed swirl discharge nozzles. Most of the energy available from the differential pressure between the cooling medium and the main header is expended while expanded through the nozzles which intensifies mechanical atomization. The resulting soft, misty spray has a very low exit velocity. This promotes rapid absorption and optimum desuperheater efficiency, even at very low flow rates. The spray from the first discharge nozzle, and typically the smallest, is quickly dispersed within an average of 3' (1m) from the point of discharge. As the plug continues to modulate open, a swirling interaction of the various discharge nozzle sprays maintains a narrow cone shaped pattern. This keeps the water droplets in the center of the header where the line turbulence is the greatest allowing for faster, more complete absorption of the cooling medium. ### Materials of Construction ### SIZING SELECTION The MNSD-V/MNSD-U and all Copes-Vulcan desuperheaters can be sized by Copes-Vulcan or an authorized sales representative using SmartSize computer sizing program to assure correct application. | ITEM | MATERIAL | | | | |--|---|--|--|--| | BODY CASTING | ASTM A217, Grade WC6 | | | | | | ASTM A217, Grade WC9 | | | | | | ASTM A217, Grade C12A | | | | | | ASTM A351, Grade CF8M | | | | | CAGE & TORQUE RING | ASTM A565, Grade 616, Type 422,
Hardened | | | | | EXTENSION LEG | ASTM A182, Grade F22 | | | | | | ASTM A565, Grade 616, Type 422,
Hardened | | | | | RETAINING RING:
(FOR SPRAY TUBE
ASSEMBLY) | ASTM A479, Type 410, Hardened | | | | | PLUG | ASTM A565, Grade 616, Type 422,
Hardened | | | | | ORIFICE DISC | ASTM A276, Type 420, Hardened | | | | | SWIRL DISC | 300 Series Stainless Steel | | | | | SPACER | ASTM A479, Type 304 | | | | | SEAL RINGS | Nitronic 60 | | | | | ROLL PIN | 400 Series Stainless Steel | | | | | SEAL
(BODY/EXTENSION LEG)
(CAGE/EXTENSION LEG) | Graphite with 316 SS | | | | | SEAT | UNS R3006 Stellite 6 | | | | | STEM | ASTM A276, Type 316, Cond. B | | | | ### **INSTALLATION RECOMMENDATIONS** For optimum control and performance, apply the following guidelines: - If the difference between the cooling medium and the header vapor temperature is greater than 450°F (250°C), and if the main header wall thickness is greater than .5" (12mm), a thermal liner is recommended. - For applications where unfiltered cooling medium is used, a 30 mesh strainer is recommended for installation upstream of the cooling medium inlet. ### TYPICAL INFORMATION REQUIRED TO SIZE: - Process steam flow rates - Process steam pressure - Process steam temperature (superheated) - Desired process steam temperature (desuperheated) - Available cooling water pressure - Available cooling water temperature - Process steam line size and schedule ### **Dimensions** ### 3" (80MM) ### **MOUNTING FLAGE SIZE** | MAIN HEADER
SIZE | А | |---------------------|--------------| | 6 " | 12.06 | | (150mm) | 306 | | 8 " | 13.06 | | (200mm) | 332 | | 10 " | 14.12 | | (250mm) | 358 | | 12 " | 15.12 | | (300mm) | 384 | | 14 " | 15.75 | | (350mm) | 400 | | 16 " | 16.75 | | (400mm) | 425.4 | | 18 " | 17.5 | | (450mm) | 451 | | 20 " | 18.75 | | (500mm) | 477 | | 22 " | 19.75 | | (550mm) | 502 | | 24 " | 20.75 | | (600mm) | 527 | | 30 " | 23.63 | | (750mm) | 600 | ### 3" (80MM) MODEL 700 CLASS 150 THROUGH 1500 | ACTUATOR | DIMENSIONS | | | | | | | | |----------|------------------------|----------------------|---------------------|-----------------|-----------------|---------------------|----------------------|------------------| | SIZE | | С | D | E | F | G | н | J FLANGE | | 160 | 39.91
998.5 | 31.31
795 | 18.00
457 | 6
152 | 9
229 | 39.31
998 | 32.38
822 | 1.5
40 | | 160L | 40.37
1025.4 | 39.75
1010 | 18.00
457 | 6
152 | 9
229 | 47.75 1213 | 40.81
1037 | 1.5
40 | STEAM FLOW ### 3" (80MM) MODEL 700 CLASS 2500 | ACTUATOR
SIZE
B | DIMENSIONS | | | | | | | | |-----------------------|-----------------------|----------------------|---------------------|-----------------|-------------------|----------------------|----------------------|------------------| | | В | С | D | E | F | G | н | J FLANGE | | 160 | 40.31
10245 | 31.31
795 | 18.00
457 | 7
178 | 9.5
241 | 41.37
1051 | 32.38
822 | 1.5
40 | | 160L | 41.37 1051 | 39.75
1010 | 18.00 457 | 7
178 | 9.5
241 | 49.81
1265 | 40.81
1037 | 1.5
40 | HEADER ### MNSD-V & MNSD-U MULTIPLE NOZZLE SPRAY DESUPERHEATER ### Global locations #### **SPX FLOW TECHNOLOGY** 5620 West Road McKean, PA 16426 United States of America +1 814 476 5800 #### **SPX FLOW TECHNOLOGY** Road Two, Industrial Estate Winsford, Cheshire CW7 3QL England +44 1606 552041 #### **SPX FLOW TECHNOLOGY** 25 International Business Park #03-03/12 German Centre Singapore 609916 +65 6264 4366 #### SPX FLOW TECHNOLOGY 6F Treasury Building 1568 Hua Shan Road Shanghai 200052 PR China +86 21 2208 5888 Based in Charlotte, North Carolina, SPX Corporation (NYSE: SPW) is a global Fortune 500 multi-industry manufacturing leader. For more information, please visit www.spx.com ### SPX FLOW TECHNOLOGY 5620 West Rd. McKean, PA 16426 P: (814)476-5800 F: (814)476-5854 E: cv@spx.com SPX reserves the right to incorporate our latest design and material changes without notice or obligation. Design features, materials of construction and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing. Please contact your local sales representative for product availability in your region. For more information visit www.spx.com. The green ">" is a trademark of SPX Corporation, Inc. ISSUED 07/2012 CV-1144-US COPYRIGHT © 2012 SPX Corporation